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Abstract. In purely repulsive, C4v-symmetric Hubbard clusters a correlation effect produces an effective
two-body attraction and pairing; the key ingredient is the availability of W = 0 pairs, that is, two-body
solutions of appropriate symmetry. We study the tunneling of bound pairs in rings of 5-site units connected
by weak intercell links; each unit has the topology of a CuO4 cluster and a repulsive interaction is included
on every site. Further, we test the superconducting nature of the response of this model to a threading
magnetic field. We present a detailed numerical study of the two-unit ring filled with 6 particles and the
three-unit ring with 8 particles; in both cases a lower filling yields normal behavior. In previous studies on
1d Hubbard chains, level crossings were reported (half-integer or fractional Aharonov-Bohm effect) which
however cannot be due to superconducting pairs. In contrast, the nontrivial basis of clusters carrying W = 0
pairs leads to genuine Superconducting Flux Quantization (SFQ). The data are understood in terms of a
cell-perturbation theory scheme which is very accurate for weak links. This low-energy approach leads to
an effective hard core boson Hamiltonian which naturally describes itinerant pairs and SFQ in mesoscopic
rings. For the numerical calculations, we take advantage of a recently proposed exact diagonalization
technique which can be generally applied to many-fermion problems and drastically reduces the size of the
matrices to be handled.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 74.20.Mn Nonconventional
mechanisms – 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes,
and nanocrystals

1 Introduction

Low-dimensional systems with strong electron-electron
correlations may lead to an anomalous Aharonov-Bohm
(AB) effect [1] with ground-state energy oscillations versus
flux φ having a period shorter than the fundamental one,
given by φ0 = hc/e. However, as we shall see below, a
fractional period φ0/N does not generally mean that the
current is carried by particles with an effective charge
e∗ = Ne. In particular, if N = 2 the half-integer AB effect
is not equivalent to the superconducting flux quantization
(SFQ) and pairing is not necessarily implied.

The repulsive Hubbard ring in the presence of a mag-
netic flux has been studied by several authors. At half
filling it was inferred by numerical evidence [2] that the
period of the ground state energy E(0)(φ) as a function of
the trapped flux φ is a whole fluxon if U/t is in a physical
parameter range. Away from half filling Kusmartsev [3]
pointed out that for microscopic Hubbard rings with
N particles the ground state energy has N éminima in the
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range [0, φ0) for U = ∞ and at low density. (This result
has been confirmed by Schofield et al. in Ref. [4]). These
oscillations were originally explained in terms of spin-flip
processes by the same author, so that the system varies
its total spin as the flux changes by one flux quantum.
However, when U = ∞ many degenerate ground states
with different total spin S exist, and a more accurate ex-
planation of the fractional AB effect has been provided by
Yu and Fowler [5,6]. They studied the Lieb-Wu [7] equa-
tions for a chain with twisted boundary conditions (a flux
φ corresponds to a twist of 2πφ/φ0) with leading t/U cor-
rections. Increasing the flux the holon momenta get shifted
and the energy of the holon sea grows; to counterbalance
this effect the system generates a compensating momen-
tum by creating a hole in the distribution of the spinon
quantum numbers. This excitation in the spinon sea is not
energetically suppressed as far as Nt/LU � 1 where L is
the number of sites. The quantization of the spinon mo-
menta does not allow a full compensation for the effect of
a continuously varying flux φ and leads to the energy os-
cillations discussed above. As Nt/LU increases the spinon
excitation energies are raised and beyond a critical value
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E0(φ) has only two minima at φ = 0 and φ = φ0/2 corre-
sponding to the spinon excitations with momentum 0 and
π, as numerically observed in references [2,5,8]. Hence,
the half-integer AB effect is driven by level-crossing due
to the spinon degrees of freedom and it is not SFQ.

Recently, an exact result on the infinite U Hubbard
ring with twisted boundary conditions has been obtained
by Nakano [9]. He proved that the ground state energy
E(0)(φ) with an even number of particles N is periodic
with period φ0/2 if the z-component of the total spin Sz =
0 and with period φ0/N if M↑/M↓ (with M↑ ≥M↓) is not
an integer; here Mσ is the number of particles with spin
σ =↑, ↓. We emphasize that the Nakano theorem is not in
contrast with the results by Kusmartsev. Indeed, even if
E(0)(φ) has period φ0/2 it may exhibit other minima in
the range [0, φ0).

The half-integer AB effect caused by the existence of
confined pairs has been observed in the framework of ex-
tended 1d Hubbard models. Sudbø et al. [10] studied an
alternating Cu-O ring with a charge-gap between Cu and
O (which favors the particles to occupy O sites) and an
on-site repulsion is allowed on Cu’s but not on O’s. In
this way a half-integer flux quantization needs a strong
off-site repulsion; pair confinement is achieved by allow-
ing for repulsion-free sites, and not by producing an ef-
fective attraction. Other authors considered modified 1d
models with bond-charge interactions so that the num-
ber of doubly occupied sites is an extra conserved quan-
tity [11]. Turning on a term breaking the extra symmetry
gives rise to an effective attractive interaction and to the
SFQ for moderate on-site repulsion. However, the pairing
mechanism is not driven by the Hubbard interaction as
witnessed by the presence of SFQ even at U = 0 [12,13].

Few data are available in 2d Hubbard systems, since
no exact solutions exist in this case and numerical explo-
rations are possible only for small clusters. Long ago Can-
right and Girvin [14] discussed the magnetic response of
the Hubbard model showing SFQ in the attractive case by
threading a magnetic field into a cylindrical probe. Assaad
et al. [15] computed numerically the magnetic response of
the repulsive Hubbard model in the same geometry at
quarter filling, but the flux quantization was found to be
normal. Signatures of anomalous flux quantization in a
4×4 geometry have been provided by Arrachea et al. [16];
however they studied an extended Hubbard model with
nearest-neighbour correlated, e.g. occupation-dependent,
hopping.

All these results would suggest that the half-integer
AB effect cannot be interpreted as SFQ in the context of
repulsive Hubbard systems. However, Anderson [17] first
advocated the non-conventional superconductivity arising
from repulsive interactions, proposing the one-band Hub-
bard Hamiltonian as a prototype model. Evidence for pair-
ing has then been obtained by several authors by a variety
of methods. Analytic approaches based on a renormaliza-
tion method [18,19] and on various implementations of
the renormalization group technique [20–22], generalized
conserving approximation theories like FLEX [23], as well
as Quantum Monte Carlo studies on supercells [24] lead to

Fig. 1. Illustration of the ring topology described in the main
text. τ and τCu represent O-O and Cu-Cu links, respectively,
as explained in detail in Section 3 below.

this conclusion. In references [25–28] we show that pairing
occurs also in purely repulsive, C4v-symmetric Hubbard
clusters.

In this paper we wish to study the tunneling of bound
pairs in rings of 5-site units with a CuO4 topology, see
Figure 1.

In the following we shall refer to the central site as Cu
and to the four external sites as O just to distinguish their
position in the unit cell. We shall see that numerical solu-
tions of such a model clearly show superconducting pair
hopping if the total number of particles is 2|Λ|+2p where
|Λ| is the number of units and 0 < p < |Λ|; in particular,
once a magnetic field is switched on into the ring, SFQ is
unambiguously observed. We note that in our model no
superconducting response is obtained with less than 2 par-
ticles per 5-site unit [CuO4]. This means that the Zhang-
Rice picture [29] for the two-dimensional d−p model does
not work in the present context and we wish to explore
a scenario with a larger number of particles. The data
are interpreted by implementing a cell-perturbation the-
ory which is very accurate for weak links. This low-energy
approach leads to an effective hard core boson Hamilto-
nian which naturally describes itinerant pairs and SFQ in
mesoscopic rings as well. We feel that SFQ from purely
repulsive Hubbard models is interesting by itself even if
it may have no direct relevance for high-Tc cuprates. The
tunneling of pairs has been studied in the context of the
t-J model too [30], but here we wish to study symmetric
Hubbard clusters for a broad range of U/t including the
weak coupling limit.

The plan of the paper is the following. In Section 2 we
recall that the CuO4 cluster has two-body singlet eigen-
states without double occupation called W = 0 pairs.
By exploiting a symmetry driven configuration interaction
mechanism they get bound once dressed by the virtual
electron-hole excitations; the binding is due to an effec-
tive attraction among the particles of the W = 0 pair. In
Section 3 we introduce the model Hamiltonian with sym-
metric clusters, as units of an arbitrary graph, linked by
intercell hoppings. For any given graph, we deduce a low-
energy effective Hamiltonian in Section 4. Partial results
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presented elsewhere [31] are extended to any number of
conducting pairs and we show that the effective Hamilto-
nian is equivalent to the 1d antiferromagnetic Heisenberg-
Ising model for a ring topology. In Section 5 we recall a
recently proposed spin-disentangled diagonalization tech-
nique that allowed us to carry out the numerical calcula-
tions. We also give practical details on the performance
of this novel approach. Results are presented and inter-
preted physically in Section 6 for the two-unit ring and
in Section 7 for the three-unit ring and compared with
the analytic predictions. For the larger ring, after review-
ing from reference [31] the flux dependence of the en-
ergy levels in the case of O-O intercell bonds we analyze
the current and show that it is a discontinuous function
of the flux and can be paramagnetic as well as diamag-
netic. Novel results for the case of Cu-Cu bonds are pre-
sented, and this case is definitely more exotic: the bound
pairs have an infinite effective mass and the flux quantiza-
tion is normal. Our main conclusions are summarized in
Section 8.

2 W = 0 pairing in Hubbard models

The repulsive Hubbard Hamiltonian has two-body sin-
glet eigenstates without double occupation [25–28] called
W = 0 pairs. Such solutions are also allowed in the
fully symmetric clusters C. In the many-body ground state
these pairs get dressed and bound, and this is signaled by
∆C(N) < 0 where ∆C(N) = E

(0)
C (N) + E

(0)
C (N − 2) −

2E(0)
C (N − 1); E(0)

C (N) is the interacting ground state en-
ergy of the cluster C with N particles. By means of a
non-perturbative canonical transformation [18,19], it can
also be shown that ∆C(N) < 0 is due to an attractive
effective interaction and at weak coupling |∆C(N)| is just
the binding energy of the pair. The extension of the theory
to the full plane was also put forth in reference [18].

The C4v symmetric 5-site cluster is the smallest one
where the W = 0 pairing mechanism works. We have al-
ready describedW = 0 pairing in great detail as a function
of the one-body and interaction parameters on all sites;
the study was extended to larger clusters too [27,32]. The
5-site unit has the same topology of the CuO4 cluster;
thus, we label the central site by the Cu symbol and the
four external ones by the O symbol. The 5-site cluster will
be also called CuO4. In order to simplify the analytical
formulas, we neglect the O-O hopping term and the only
nonvanishing hopping matrix elements are those between
an O site and the central Cu site; they are all equal to t.
For the sake of simplicity, we parametrize the Hubbard
model in such a way that actually everything depends
only on the ratio U/t. Thus, we consider the Hubbard
Hamiltonian

HCuO4 = t
∑
iσ

(
d†σpiσ + p†iσdσ

)

+ U

(∑
i

n̂
(p)
i↑ n̂

(p)
i↓ + n̂

(d)
↑ n̂

(d)
↓

)
(1)

Table 1. Character table of the S4 group. Each quatern
(n1, n2, n3, n4) labels a class of S4.

S4 (4, 0, 0, 0) (2, 1, 0, 0) (0, 2, 0, 0) (1, 0, 1, 0) (0, 0, 0, 1)

A1 1 1 1 1 1

B2 1 −1 1 1 −1

E 2 0 2 −1 0

T1 3 1 −1 0 −1

T2 3 −1 −1 0 1

Table 2. Character table of the C4v symmetry group. Here 1

denotes the identity, C2 the 180 degrees rotation, C
(+)
4 , C

(−)
4

the counterclockwise and clockwise 90 degrees rotation, σx, σy

the reflection with respect to the y = 0 and x = 0 axis and
σ+, σ− the reflection with respect to the x = y and x = −y
diagonals. In the last column we show typical basis functions.

C4v 1 C2 C
(+)
4 , C

(−)
4 σx, σy σ+, σ− Symmetry

A1 1 1 1 1 1 x2 + y2

A2 1 1 1 −1 −1 (x/y) − (y/x)

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y)

where p†iσ and piσ are the creation and annihilation opera-
tors onto the O i = 1, .., 4 with spin σ =↑, ↓, d†σ and dσ are
the creation and annihilation operators onto the Cu site,
while n̂(p)

iσ = p†iσpiσ and n̂(d)
σ = d†σdσ are the corresponding

number operators. HCuO4 is invariant under the permuta-
tion group S4. The classes of S4 can be labelled with the
quatern (n1, n2, n3, n4). Each class contains all the per-
mutations where ni is the maximum number of sets of
i elements that remain unchanged after the permutation.
For example (4,0,0,0) contains all the permutations such
that 4 sets containing one element remain unchanged, that
is the identity. On the other hand (2,1,0,0) contains all the
permutations such that 2 sets containing one element and
one set containing 2 elements remain unchanged. Starting
from the configuration 1234, this class contains the per-
mutations 1243, 1432, 1324, 4231, 3214, 2134. S4 has the
irreducible representations (irreps) A1 (total-symmetric),
B2 (total-antisymmetric), E (self-dual), T1 and its dual T2,
of dimensions 1, 1, 2, 3 and 3, respectively, see Table 1.
The model admits a W = 0 pair belonging to the irrep E
and formed by mixing degenerate one-body states.

For later use, we recall how the irrep Γ ∈
{A1, T1, E , T2, B2} of S4 breaks in C4v, that is the
point symmetry group of the square. C4v is a subgroup
of S4 and its Character Table is shown in Table 2. From
Tables 1 and 2 we have

A1 = A1, T1 = B1 ⊕ E, T2 = A2 ⊕ E, B2 = B2,

E = A1 ⊕ B2 . (2)

From equation (2) we see that we may label the two
components of the W = 0-pair irrep E in terms of the
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Fig. 2. ∆CuO4(4) (in t units) as a function of U/t. The max-
imum binding occurs at U ∼ 5t where ∆CuO4(4) ≈ −0.042 t.
For U > 34.77 t (not shown), ∆CuO4(4) becomes positive and
pairing disappears.

irreps A1 and B2 of C4v. For example, defining by p†x,σ =
1√
2
(p†1,σ−p

†
3,σ) and p†y,σ = 1√

2
(p†2,σ−p

†
4,σ) two of the three

degenerate eigen-operators of the kinetic term in HCuO4 ,
the B2 component of the W = 0 pair is obtained by acting
with the two-body singlet operator

1√
2

(
p†x,↑p

†
y,↓ + p†y,↑p

†
x,↓

)
(3)

on the vacuum.
The ground state of CuO4 [2] (i.e. CuO4 with 2 par-

ticles) belongs to 1A1 and that of CuO4 [4] is in 1E ; both
are singlets, as the notation implies. The ground state of
CuO4 [3] is a 2T1 doublet. ∆CuO4(4) has a minimum at
U ≈ 5 t for this model, as shown in Figure 2, and it
is negative when 0 < U < 34.77 t. We emphasize that
∆CuO4(4) becomes positive for large values of U/t and
hence pairing disappears in the strong coupling regime. In
the present problem U must exceed several tens of times t
before the asymptotic strong coupling regime sets in. A
perturbation theory will strictly apply at weak coupling
where the second derivative of the curve is negative; how-
ever, qualitatively a weak coupling approach is rewarding
in all the physically interesting range of parameters. The
above pairing mechanism does not work in the neighbor-
hood of the infinite U limit.

We analyzed the pairing mechanism in detail in ref-
erence [28]; for the sake of simplicity here we report in
Figure 3 the leading, second-order two-body amplitude
for particles of opposite spins in the degenerate (x, y) or-
bitals of CuO4. We demonstrated [28] that this produces
an effective interaction, which pushes down the singlet in
equation (3) and up the triplet by |∆CuO4(4)|. In this way,
∆CuO4(4) can be redefined without any reference to the
ground state of clusters with a different number of parti-
cles, and we are free from the objections based on a pos-
sible Jahn-Teller distortion of odd-N clusters [33].

The formation of bound pairs from purely repulsive
interactions was first proposed in a pioneering paper [34]
by Kohn and Luttinger. They showed that any three-
dimensional Fermi liquid undergoes a superconducting
transition by Cooper pairs of very large angular momen-
tum l. A simplified view of the Kohn-Luttinger effect is
given by considering one particle of the pair as an ex-
ternal charge. Then, the screening gives rise to a long-
range oscillatory potential (Friedel oscillations) due to the
singularity of the longitudinal dielectric function at 2kF;

Fig. 3. The second order spin-flip diagrams for the two-body
amplitude.

here kF is the Fermi wavevector. The strict reasoning ex-
ploits the fact that the Legendre expansion coefficients of
any regular direct interaction between particles of oppo-
site momentum drops off exponentially in l. On the other
hand, the second-order contribution to the scattering am-
plitude falls as 1/l4 and at least for odd l leads to an at-
tractive interaction. In the modern renormalization group
language [35], the second-order correction is obtained by
summing up the marginal scattering amplitudes of the
isotropic Fermi liquid coming from the so-called Forward
channels, including, for antiparallel spins, a spin-flip dia-
gram. This scenario does not work in the two-dimensional
Fermi liquid, but going beyond the second-order perturba-
tion theory the Kohn-Luttinger effect is recovered [36]. In
the Hubbard model, there is first-order interaction only
for antiparallel spins, but it vanishes for W = 0 pairs;
in second-order, in the singlet channel, the spin-flip dia-
gram is the only one that survives. We found pairing in
the singlet channel in a variety of models including car-
bon nanotubes [37]. Hence, the W = 0 pairing mechanism
in the Hubbard model belongs to the broad category of
Kohn-Luttinger effects with no direct interaction and a
second-order correction coming from the spin-flip channel
only, as shown in Figure 3.

3 Modelling intercell hopping

We use CuO4 units as nodes of a graphΛ. The total Hamil-
tonian is

Htot = H0 +Hτ , (4)

with

H0 =
∑
α∈Λ

[
t
∑
iσ

(
d†ασpα,iσ + p†α,iσdασ

)

+U

(
n̂

(d)
α↑ n̂

(d)
α↓ +

∑
i

n̂
(p)
α,i↑n̂

(p)
α,i↓

)]
(5)

where p†α,iσ is the creation operator onto the O i = 1, .., 4
of the α-th cell and so on, while Hτ is an intercell hopping
Hamiltonian. The point symmetry group of H0 includes
S
|Λ|
4 , with |Λ| the number of nodes.
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There are many different ways to add an intercell hop-
ping. Nevertheless, to preserve the symmetry that pro-
duces the ∆CuO4(4) < 0 property, we take Hτ invariant
under the S4 subgroup of S|Λ|

4 . In the following we shall
consider a hopping term that allows a particle in the ith
O site of the αth unit to move towards the ith O site of
the βth unit with hopping integral ταβ ≡ |ταβ |eiθαβ :

Hτ =
∑

α,β∈Λ

∑
iσ

[
ταβp

†
α,iσpβ,iσ + h.c.

]
. (6)

For N = 2|Λ| and ταβ ≡ 0, the unique ground state
consists of 2 particles in each CuO4 unit. Section 4 (the-
ory) and Section 7.1 (numerical) are devoted to the in-
tercell hopping produced by small |ταβ | � |∆CuO4(4)|; to
study the propagation of p pairs we consider a total num-
ber of N = 2|Λ| + 2p particles. When U/t is such that
∆CuO4(4) < 0, each pair prefers to lie on a single CuO4

and for N = 2|Λ| + 2p the unperturbed ground state is
2p×

(|Λ|
p

)
times degenerate (since 1E has dimension 2). On

the other hand, Section 7.2 reports the effects of an in-
tercell hopping τCu between Cu sites only; this does not
break the S|Λ|

4 symmetry and therefore its consequences
on pair propagation and SFQ are drastically different. By
this sort of models one can study the interaction of several
pairs in the same system. We are using CuO4 as the unit
just for the sake of simplicity, but the W = 0 mechanism
produces bound pairs at different fillings for larger clus-
ters [28] too. By replacing CuO4 by larger units one can
model other ranges of filling fraction.

4 Low-energy effective Hamiltonian for O-O
intercell hopping

In order to study the propagation of the p added pairs, we
obtain an effective Hamiltonian by the cell-perturbation
method with H0, equation (5), the “cell-Hamiltonian” and
Hτ , equation (6), the “intercell perturbation” and by tak-
ing into account only the low-energy singlet sector. We
note that the cell-perturbation method was already used
in reference [38] and in reference [39] to support the origi-
nal Anderson’s conjecture [17] on the “low-energy equiva-
lence” between the d− p model (proposed by Emery [40])
and the single-band Hubbard model. Despite the analogies
with reference [39] (like the same cell-Hamiltonian and
weak O-O links between different cells) our intercell per-
turbation is different and, more important, it is the low-
energy sector which differs (one needs to consider CuO4

units with 2, 3 and 4 bodies, in contrast with 0, 1 and 2
bodies of Ref. [39]).

Let us introduce some useful notation.
Let |Ψ (N)

0 (α)〉, α = 1 . . . |Λ| be the ground state of the
α − th CuO4 unit with 2 ≤ N ≤ 4 particles and E(0)(N)
the corresponding energies. Let S ⊂ Λ, with |S| = p, be
the set of p CuO4 units occupied by four particles and S̄ its
complement in Λ, that is S̄ ≡ Λ \S. When ∆CuO4(4) < 0,
the unperturbed ground state with 2|Λ|+2p particles can

be written as

|ΦS
0 〉 =

∏
α∈S

|Ψ (4)
0 (α)〉

∏
β∈S̄

|Ψ (2)
0 (β)〉 (7)

and its unperturbed eigenenergy is given by

H0|ΦS
0 〉 =

[
pE(0)(4) + (|Λ| − p)E(0)(2)

]
|ΦS

0 〉 ≡ E(0)
p |ΦS

0 〉·
(8)

The energies needed to excite the CuO4 cluster from the
ground state for U = 5 ÷ 6 t (when ∆CuO4(4) ≈ −0.04 t,
see Fig. 2) is ≈ t with 2 bodies and ≈ 0.1 t with 4 bod-
ies; both are large compared with |∆CuO4(4)| and no level
crossings take place if |ταβ | � |∆CuO4(4)|.

The perturbation Hτ in second order will remove part
of the 2p×

(|Λ|
p

)
degeneracy. Let |Φ0〉 be an exact eigenstate

with eigenenergy E. Expanding |Φ0〉 as

|Φ0〉 �
∑
S′
aS′ |ΦS′

0 〉 (9)

one gets

(E − E(0)
p )aS =

∑
S′

[∑
m

〈ΦS
0 |Hτ |Φm〉〈Φm|Hτ |ΦS′

0 〉
E − E

(0)
m

]
aS′

(10)
where {|Φm〉} is a complete set of excited eigenstates of
H0 and {E(0)

m } their eigenenergies.
Our crucial approximation is now to truncate the sum

over the excited states {|Φm〉} considering only the low-
energy states of the form

|ΦT ,D
0 〉 =

∏
α∈T

|Ψ (4)
0 (α)〉

∏
γ∈D

|Ψ (3)
0 (γ)〉

∏
β∈T ∪D

|Ψ (2)
0 (β)〉,

(11)
where T ⊂ Λ is the set of |S| − 1 ≡ |T | CuO4 units with
4 particles, obtained by removing one particle in one of
the previous |S| units with 4 particles; in this way we get
|D| = 2 cells with 3 particles; the remaining |Λ| − |S| −
1 ≡ |T ∪ D| cells have 2 particles. This approximation is
legitimated by the fact that the first excited state with 3
particles is ≈ t above the ground state for U in the range
5 ÷ 6 t.

The energy of the excited states in equation (11) is

Ẽ(0)
p = (|S| − 1)E(0)(4) + 2E(0)(3) + (|Λ| − |S| − 1)E(0)(2)

and does not depend on the sets T and D. Within this
approximation the Schrödinger equation (10) reduces to

1
∆CuO4(4)

∑
T ,D

∑
S′

〈ΦS
0 |Hτ |ΦT ,D

0 〉〈ΦT ,D
0 |Hτ |ΦS′

0 〉 aS′ = εaS ,

(12)
where ε ≡ E−E(0)

p and we have disregarded contributions
of higher order in ε.

The amplitude aS ≡ a(α1, . . . , αp) is totally sym-
metric with respect the permutations of the distinct in-
dices α1, . . . , αp. Letting K(α) = {β ∈ Λ : ταβ �= 0}, after
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some algebra equation (12) may be written in the form:

p∑
j=1

∑
β∈K(αj)

∏
i�=j

(1 − δβαi)Jβ,αj [a(α1, . . . , αp)

+ e2iθβαj a(α1, .., αj−1, β, αj+1, .., αp)] = εa(α1, . . . , αp).
(13)

This is a Schrödinger equation for p hard-core bosons with
a complex effective hopping integral; below the J coeffi-
cients will be calculated analytically and studied as a func-
tion of the ratio U/t. In equation (13), the second term
in the l.h.s. describes pair propagation, e.g. from unit αj

to an unoccupied unit β; in the first term, the system gets
back to the initial state after virtually exploring unit β;∏

i�=j(1 − δβαi) takes into account that if β is one of the
occupied units, the particle cannot move toward it.

4.1 Evaluation of the effective hopping integral
and selection rules

In equations (7–11) we omitted the irrep labels of |Ψ (2)
0 〉,

|Ψ (3)
0 〉 and |Ψ (4)

0 〉 in order to avoid a proliferation of in-
dices. Nevertheless, to calculate the J ’s we need to rein-
troduce them. The ground state with two particles is non-
degenerate; it belongs to the irrep A1 of S4 that coincides
with A1 in C4v, and the change in notation is:

|Ψ (2)
0 〉 −→ |Ψ (2),A1

0 〉 = |Ψ (2),A1
0 〉· (14)

As far as the ground state with three particles is con-
cerned, we recall that it is three times degenerate (apart
from the trivial spin degeneracy) and belongs to the irrep
T1 of S4 that in C4v breaks into B1 ⊕ E:

|Ψ (3)
0 〉 −→ |Ψ (3),T (r)

1
0 〉 r = 1, 2, 3 (15)

where we may set up our basis such that T (1)
1 = B1 ,

T (2)
1 = Ex and T (3)

1 = Ey .
Finally, the ground state with four particles is two

times degenerate and belongs to the irrep E of S4 that
in C4v breaks into A1 ⊕B2:

|Ψ (4)
0 〉 −→ |Ψ (4),E(s)

0 〉 s = 1, 2 (16)

where E(1) = A1 and E(2) = B2. Useful selection rules
may be obtained using group theory. By exploiting the
invariance of Hτ under the group S4 and omitting, for
the sake of clarity, the spin indices in the states |Ψ (3)

0 〉, it
follows that

〈Ψ (4),E(s)

0 (α)|〈Ψ (2),A1
0 (β)|Hτ |Ψ (3),T (rα)

1
0 (α)〉|Ψ (3),T

(rβ)
1

0 (β)〉
(17)

is non-vanishing if and only if

T (rα)
1 = T (rβ)

1 (18)

Fig. 4. J in units of |τ |2 versus U/t. The formal divergence
as U → 0 is not serious since the effective theory holds for
intermediate U/t, when |∆CuO4(4)| is large enough.

for E(s) = A1; instead for E(s) = B2,

T (rα)
1 = Ex, T (rβ)

1 = Ey (19)

or
T (rα)

1 = Ey, T (rβ)
1 = Ex. (20)

In the case s = 1, we have E(1) = A1 and hence by
using the selection rules in equation (18), the matrix ele-
ment in equation (17) consists of three different contribu-
tions coming from the virtual 3-body states of symmetry
B1 ⊗B1, Ex ⊗ Ex and Ey ⊗ Ey:

τeff
αβ [B1, B1] ≡ −ταβ

∑
i

〈Ψ (3),B1
0,↑ (α)|p†α,i↑|Ψ

(2),A1
0 (α)〉

× 〈Ψ (3),B1
0,↓ (β)|pβ,i↑|Ψ (4),A1

0 (β)〉;

τeff
αβ [Eµ, Eµ] ≡ −ταβ

∑
i

〈Ψ (3),Eµ

0,↑ (α)|p†α,i↑|Ψ
(2),A1
0 (α)〉

× 〈Ψ (3),Eµ

0,↓ (β)|pβ,i↑|Ψ (4),A1
0 (β)〉,

with µ = x, y. Therefore one can solve the Schrödinger
equation (13) with

Jα,β =

2 ×
|τeff

αβ [B1, B1]|2 + |τeff
αβ [Ex, Ex]|2 + |τeff

αβ [Ey, Ey]|2

∆CuO4(4)
,

(21)

where the factor 2 comes from the spin degeneracy. In
Figure 4 we show the trend of J in units of |τ |2 versus
U/t. The case E(2) = B2 is similar and may be obtained
by group theory.

The above treatment holds for any Λ; in the next sec-
tion we shall specialize to the case of a one-dimensional
chain with hopping integrals ταβ only between nearest
neighbors units.

4.2 Ring shaped system

In order to discuss the propagation of bound pairs and the
quantization of a magnetic flux, we use a chain with peri-
odic boundary conditions and nearest neighbors hopping
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Fig. 5. Results of equation (13) for the three-unit ring with
|τ | = 0.001 t, U = 5 t. Lowest-energy eigenvalues labelled by
their intercell quasi-momentum are shown versus flux φ. All
energies are in t units.

matrix elements ταβ :

ταβ =



τ if β = α+ 1,
τ∗ if β = α− 1,
0 otherwise

τ = |τ |e
2πi
|Λ|

φ
φ0 . (22)

For the sake of simplicity we first analyze the case with
just one added pair (p=1) in detail. If the pair belongs to
the A1 component of the E irrep the zeroth-order ground-
state is |Λ| times degenerate. The effective Schrödinger
equation (13) reads

εa(α) = J
[
2a(α) + e

4iπ
|Λ|

φ
φ0 a(α+ 1) + e

− 4iπ
|Λ|

φ
φ0 a(α− 1)

]
which is readily solved by Fourier transforming and yields
the following eigenvalues

εk = 2J
[
1 + cos

2π
|Λ|

(
k + 2

φ

φ0

)]
, k = 1, . . . , |Λ| .

(23)
The presence of the factor 2 in front of φ/φ0 implies that
the model quantizes the flux in units of φ0/2, like su-
perconducting pairs do. Indeed, the ground state energy
E

(0)
Λ (2|Λ| + 2) = mink εk is strictly periodic in φ with pe-

riod φ0/2 for any |Λ| > 2.
The case |Λ| = 3 will be used below for a numerical

test of equation (23). The lowest state energies for every
quasimomentum in the three-unit ring with 8 particles
are plotted in Figure 5 versus φ/φ0. It can be shown, see
below, that |Λ| = 3 is the shortest ring showing this effect.

In the case of p pairs, equation (13) yields

p∑
j=1

∑
β=±1

∏
i�=j

(1 − δαj+β,αi)J [a(α1, . . . , αp)

+ eβ 4iπ
|Λ|

φ
φ0 a(α1, .., αj + β, .., αp)] = εa(α1, . . . , αp) (24)

and the model is equivalent to the Heisenberg-Ising spin
chain governed by the Hamiltonian

HHI =
|Λ|∑

α=1

J [2ησz
ασ

z
α+1 + e

4iπ
|Λ|

φ
φ0 σ+

α+1σ
−
α +

e−
4iπ
|Λ|

φ
φ0 σ+

α σ
−
α+1] (25)

where the σ’s are Pauli matrices, spin up represents an
empty site and spin down represents a pair. η is the
so called anisotropy parameter and to reproduce equa-
tion (24) we must choose η = −1. For η = 1, we have the
isotropic Heisenberg interaction. By performing a Jordan-
Wigner transformation, the Hamiltonian in equation (25)
can also be mapped into a model of spinless fermions
on the ring. In the absence of a threading magnetic field
(φ = 0) the problem was originally studied by Bloch [41]
and then exactly solved by Hulthen [42] (in the case
η = −1) and Orbach [43] (in the case η ≤ −1) using
the Bethe’s hypothesis [44]. A systematic analysis in the
whole range of parameters was given by Yang and Yang
in a self-contained series of papers [45]. Here we just recall
that the model has a gapless phase if |η| ≤ 1, correspond-
ing to the conducting state, while an insulating phase sets
in for η < −1. As in the 1d Hubbard model, the “magnetic
perturbation” (φ �= 0) does not spoil the integrability and
the Heisenberg-Ising Hamiltonian remains exactly solvable
by the Bethe-ansatz method. Let us write an eigenfunction
of HHI as

a(α1, ..., αp) =
∑
P

AP e
i
∑

j kP jαj (26)

where P is a permutation of the integers 1, . . . , p and AP

are p! coefficients. Shastry and Sutherland [46] have shown
that the variables kj are given by

|Λ|kj = 2πIj + 4π
φ

φ0
−
∑
l �=j

θ(kj , kl) (27)

with a phase shift

θ(k, q) = 2 tan−1

[
η sin[(k − q)/2]

cos[(k + q)/2] − η cos[(k − q)/2]

]
·

(28)
From equations (25–27) we readily see that the ground
state energy of the low-energy effective Hamiltonian HHI

is periodic with period φ0/2, independent of the number
of added pairs. MoreoverHHI is also the appropriate effec-
tive model for the strong-negative U Hubbard model [47],
for which evidence of superconductivity is clear [48]. Thus
we conclude that the purely repulsive CuO4-Hubbard ring
threaded by a magnetic field quantizes the flux in a super-
conducting fashion if the number of particles is 2|Λ| + 2p
with 0 ≤ p ≤ |Λ|.

5 Spin-disentangled diagonalization

In order to find the lowest energy eigenvalues and eigen-
functions when the dimension N of the Hilbert space is
very large one must avoid storing the N ×N Hamiltonian
matrix HN×N . The obvious recipe for sparse matrices,
which are best handled by the Lanczos method, prescribes
storing the nonzero elements and their row and column ad-
dresses in arrays. However for big problems this process
is slow, since the matrix elements must be referenced to
their position in HN×N and must be retrieved each time
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for later use. One can try to improve the situation by
projecting on the irreps of the symmetry group in order
to reduce N ; however this involves building the projected
basis and then new Hamiltonian matrix elements, and the
new Hamiltonian is much less sparse than before, which
destroys much of the benefit gained by the symmetry.

Here we exactly diagonalize the |Λ| = 2 and |Λ| =
3 ring Hamiltonian by the Spin-Disentangled technique,
which we briefly introduced recently [31], but deserves a
fuller illustration. This allows to solve the N ×N many-
electron problem by storing and handling

√
N ×

√
N ma-

trices. One of its clear advantages is that it does not require
the Hamiltonian to be sparse. The method is also much
more convenient than the usual one, since the

√
N ×

√
N

matrices are directly used by matrix multiplication, which
is a fast process, and no mapping back onto HN×N is in-
volved. All the advantages of symmetry are gained simply
by using a projected starting state of the Lanczos chain.
To the best of our knowledge, the Spin-Disentangled tech-
nique was not invented earlier, which is somewhat surpris-
ing, being a very general method.

We let M↑ + M↓ = N where Mσ is the number of
particles of spin σ; {|φασ〉} is a real orthonormal basis,
that is, each vector is a homogeneous polynomial in the
p† and d† of degree Mσ acting on the vacuum. We write
the ground state wave function in the form

|Ψ〉 =
∑
αβ

Lαβ|φα↑〉 ⊗ |φβ↓〉 (29)

which shows how the ↑ and ↓ configurations are entangled.
The particles of one spin are treated as the “bath” for
those of the opposite spin: this form also enters the proof
of a famous theorem by Lieb [49]. In equation (29) Lαβ is
a m↑×m↓ rectangular matrix with mσ=

(
5|Λ|
Mσ

)
. We let Kσ

denote the kinetic energymσ×mσ square matrix ofHtot in
the basis {|φασ〉}, and N (σ)

s the spin-σ occupation number
matrix at site s in the same basis (N (σ)

s is a symmetric
matrix since the |φασ〉’s are real). Then, L is acted upon
by the Hamiltonian Htot according to the rule

Htot[L] = [K↑L+ LK↓] + U
∑

s

N (↑)
s LN (↓)

s . (30)

In particular for M↑ = M↓ (Sz = 0 sector) it holds K↑ =
K↓ and N

(↑)
s = N

(↓)
s . Thus, the action of H is obtained

in a spin-disentangled way. The generality of the method
is not spoiled by the fact that it is fastest in the Sz = 0
sector, because it is useful provided that the spins are not
totally lined up; on the other hand, Sz = 0 can always be
assumed, as long as the Hamiltonian is SU(2) invariant.

For illustration, consider the Hubbard model with two
sites a and b and two electrons (H2 molecule) each in the
φa or φb orbital. The intersite hopping is t and the on-site
repulsion U . In the standard method, one sets up basis
vectors for the Sz = 0 sector

|ψ1〉 = |φa↑〉 ⊗ |φa↓〉, |ψ2〉 = |φa↑〉 ⊗ |φb↓〉,
|ψ3〉 = |φb↑〉 ⊗ |φa↓〉, |ψ4〉 = |φb↑〉 ⊗ |φb↓〉·

One then looks for eigenstates (three singlets and one
triplet)

|Ψ〉 =
4∑

i=1

ψi|ψi〉 (31)

of the Hamiltonian

HH2 =



U t t 0
t 0 0 t
t 0 0 t
0 t t U


 . (32)

Instead of working with 4 × 4 matrices, we can cope with
2 × 2 by the spin-disentangled method using the form in
equation (29) with

L =
(
ψ1 ψ2

ψ3 ψ4

)
, Kσ =

(
0 t
t 0

)
,

N (σ)
a =

(
1 0
0 0

)
, N

(σ)
b =

(
0 0
0 1

)
.

Using equation (30), one finds

HH2 |Ψ〉 =
∑

α=a,b

∑
β=a,b

(HH2 [L])αβ |φα↑〉 ⊗ |φβ↓〉 (33)

with

HH2 [L] =
(
Uψ1 + t(ψ2 + ψ3) t(ψ1 + ψ4)

t(ψ1 + ψ4) Uψ4 + t(ψ2 + ψ3)

)
.

(34)
The reader can readily verify that this is the same as ap-
plying HH2 in the form of equation (32) to the standard
wave function in equation (31) and then casting the result
in the form of equation (29). Since we can apply HH2 we
can also diagonalize it.

N = 4 for the H2 toy model, but in the Sz = 0 sec-
tor for the |Λ|=3 ring, N = 1863225 and

√
N = 1365,

which is a clear advantage. Here we have implemented
this method for the Hubbard Hamiltonian. We emphasize,
however, that this approach will be generally useful for the
many-fermion problem, even with a realistic Coulomb in-
teraction, which can be suitably discretized.

5.1 The practical numerical recipe

We put a symmetry-adapted trial wave function in the
form in equation (29) and operate the Hamiltonian ma-
trix by equation (30); each new application introduces
a new Lanczos site and we can proceed by generating
a Lanczos chain. To this end we need to orthogonal-
ize to the previous sites by the scalar product given by
〈Ψ1|Ψ2〉 = Tr(L†

1L2). In this way we put the Hamiltonian
matrix in a tri-diagonal form. This method is well suited
since we are mainly interested in the low-lying part of the
spectrum. A severe numerical instability sets in when the
chain exceeds a few tens of sites, i.e. well before the Lanc-
zos method converges. Therefore we use repeated two-site
chains alternated with moderate-size ones.
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In the basis of the sites (of the original cluster) the oc-
cupation matrices N (σ)

s are diagonal with elements equal
to 0 or 1, simplifying the calculation of the interaction
term. Moreover, in choosing the trial wave function for
small τ we take full advantage from our knowledge of the
S4 irrep of the τ = 0 ground state. This speeds the cal-
culation by a factor of the order of 2 or 3 compared to a
random starting state (or even more, if U is large). Typ-
ically, starting from a τ = 0 ground state for the three-
unit ring, 24 short Lanczos chains were enough to obtain
a roughly correct energy and a 20-site chain achieved an
accurate eigenvalue and an already stabilized eigenvector.
In limiting cases when the results could be checked against
analytic ones, using double precision routines an accuracy
better than 12 significant digits was readily obtained. On
a personal computer with a Celeron CPU the three-unit
ring with 8 particles required 40 minutes for the eigen-
value, and an accurate wave function required less than a
hour.

6 Numerical results and discussion:
the two-unit “ring”

In this section we analyze the two-unit ring with
∆CuO4(4) < 0. Here a complex τ is equivalent to a real
one, i.e. no magnetic field can thread the system. This is
peculiar of the ring with two clusters, since each CuO4 is
on the right as well as on the left of the other. Indeed, we
have

Hτ = (τ + τ∗)
∑
jσ

(
p†1,jσp2,jσ + p†2,jσp1,jσ

)

= 2|τ | cos
(
πφ

φ0

)∑
jσ

(
p†1,jσp2,jσ + p†2,jσp1,jσ

)
; (35)

hence, the ground state energy E(0)(φ, |τ |) as a function
of the flux φ and of the modulus of τ satisfies

E(0)(φ, |τ |) = E(0)

(
0, |τ | cos

πφ

φ0

)
· (36)

E(0)(φ, |τ |) has a local maximum at φ = φ0/2 (a property
which is independent of the number of particles in the two-
unit ring) since Hτ in equation (35) vanishes; see Figure 6
for the case of 2|Λ| + 2 = 6 particles.

The translational invariance allows to label any state
by the crystal momentum p ≡ π�k, k = 0, 1. We introduce
the short-hand notation |+〉 and |−〉 for the components
of the 6-body non-interacting ground-state multiplet with
k = 0 and k = 1 respectively

|±〉 =
1√
2

[
|Ψ (4)

0 (1)〉|Ψ (2)
0 (2)〉 ± |Ψ (2)

0 (1)〉|Ψ (4)
0 (2)〉

]
. (37)

We have
〈Ψ (3)

0 (1)|〈Ψ (3)
0 (2)|Hτ |−〉 = 0 (38)

(the singlet projection of |Ψ (3)
0 (1)〉|Ψ (3)

0 (2)〉 has k = 0
quantum number) and there is no second order correction

Fig. 6. Energy of the ground state (k = 0) and of the first
excited state (k = 1) with 2|Λ|+2 = 6 particles as a function of
φ/φ0. Here U = 5t, (∆CuO4(4) ≈ −0.04258 t) and |τ | = 0.001 t.
The energies are in units of t.

in the k = 1 subspace as shown in Figure 6. In the k = 0
subspace the correction is proportional to |τ |2/∆CuO4 for
small |τ |, in agreement with the analytical predictions. As
shown in Figure 6, the maximum at φ = φ0/2 is not a
cusp, as there no level crossing is found.

7 Numerical results and discussion:
the three-unit ring

7.1 O-O intercell hopping

In this section we consider the three-unit ring focusing the
attention on the case ∆CuO4(4) < 0 and total number of
particles 2|Λ| + 2 = 8. The switching on of the hopping τ
between the O sites breaks the symmetry group C3v ⊗ S3

4
into C3v ⊗ S4 for real τ ; in a magnetic field (complex τ),
this further breaks into C3 ⊗ S4. Real τ lifts the degener-
acy between the k = 0 subspace and the subspaces k = 1
and k = 2 of C3 (as usual k is related to the crystal mo-
mentum p ≡ 2π�k/3 in this case), but cannot split k = 1
and 2 because they belong to the degenerate irrep of C3v;
complex τ resolves this degeneracy.

In Figure 7 we report the numerically exact results for
a ring with three clusters, with U = 5t and |τ | in the
range from 0 to 0.006t. The ground state energy and the
first excited level depend quadratically on |τ | for small |τ |.
As expected from equation (23), the lower eigenspace has
k = 0, while the first excited one contains the states with
k = 1 and 2. Differently from the two-unit ring, the first
excited level receives a second-order correction.

The three-unit ring is the smallest ring where we can
insert a magnetic flux φ by τ = |τ |eiθ, θ = 2π

3 (φ/φ0).
The energies of the three ground-state multiplet compo-
nents are reported in Figure 8 for |τ | � |∆CuO4(4)| and
U = 5t. At φ = 0 the ground state belongs to the k = 0
subspace, while the first excited levels have k = 1 and 2.
Their spatial degeneration is fully lifted: the k = 1 level
increases while the k = 2 level decreases up to φ = φ0/2.
As φ increases, the ground state energy grows quadrat-
ically in φ (diamagnetic behaviour). Near φ = φ0/4 we
find a level crossing between k = 0 and k = 2, while at
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Fig. 7. Energies of the ground state (k = 0) and of the first
excited state (k = 1 and 2) of the three-unit ring with 8 par-
ticles versus |τ | for U = 5t. The energies are in units of t, the
parameter |τ | is in units of 10−3t.

Fig. 8. Numerical results for the low energy states of the three-
unit ring , as a function of the concatenated magnetic flux. Here
U = 5 t, (∆CuO4(4) ≈ −0.04258 t) |τ | = 0.001 t. The energy is
in units of t.

φ = φ0/2, k = 0 becomes degenerate with k = 1 and the
ground state energy is in a new minimum belonging to
the k = 2 subspace: a sort of “restoring” of the φ = 0
situation is taking place as in the BCS theory [50]. In-
deed, at φ = φ0/2 the symmetry group is C̃3v ⊗ S4 where
C̃3v is isomorphous to C3v (reflections σ are replaced by
σg, where g is a suitable gauge transformation). This fea-
ture was also found in other geometries [18,32]. In the
region from φ = φ0/2 and φ = φ0 we numerically verified
that Ek=2(φ) = Ek=2(φ0 − φ), Ek=0(φ) = Ek=1(φ0 − φ)
and Ek=1(φ) = Ek=0(φ0 − φ), where Ek(φ) is the ground
state energy in the k sector. The comparison of the nu-
merical results shown in Figure 8 with the analytic ones
in Figure 5 supports the accuracy of the cell-perturbation
scheme proposed in Section 4. Thus, the dressed W = 0
pair screens the vector potential as a particle with an ef-
fective charge e∗ = 2e does. At both minima of E(0)(φ)
we have computed ∆3−unit(8) ≈ −10−2t. Here, the half-
integer AB effect is actually SFQ.

Fulfilling the conditions ∆CuO4(4) < 0 and |τ | �
|∆CuO4(4)|, we varied U and |τ | and found analogous
trends for the ground state energy. Increasing |τ | with
fixed ∆CuO4(4) lowers the central minimum and de-
presses the two maxima. On the other hand, if |∆CuO4(4)|

Fig. 9. Total current for the three-CuO4 ring, as a function of
the magnetic flux. Here U = 5 t, |τ | = 0.001 t. The current is in
units of e|τ |/h. The thick line marks the ground state current.

decreases at fixed |τ | the central minimum and the side
peaks are affected in a similar way. This is reasonable since
the perturbative parameter is |τ |/|∆CuO4(4)|.

The three-unit ring also enables us to study persistent
diamagnetic currents carried by bound pairs screening the
magnetic flux. We calculated the expectation value for
each k of the total current operator as a function of the
flux. The current operator [51]

Î = c
∂Htot

∂φ

=
e

�|Λ|
∑
i,α,σ

i
(
τ p†α+1,iσpα,iσ − τ∗p†α,iσpα+1,iσ

)
(39)

yields a gauge invariant average I. By expanding Î in
equation (39) in powers of φ near φ = 0 one may iden-
tify the paramagnetic and the diamagnetic contributions
with the zeroth and the first order terms respectively [52].
The results are reported in Figure 9; the current is pro-
portional to the flux derivative of the ground-state energy
(see Fig. 8) according to the Hellmann-Feynman theorem.
Near φ = 0 the system generates a diamagnetic current
which screens the threaded magnetic field. When φ ex-
ceeds a critical value ∼ φ0/4, a breakdown of the ground
state occurs. This corresponds to a discontinuity of the
current which changes sign; then the current enhances the
external field. At φ = φ0/2 the current vanishes again.
Indeed, like at φ = 0, the eigenfunctions may be chosen
real (Hτ at φ = φ0/2 is obtained from Hτ at φ = 0 by
reversing the sign of four O-O bonds connecting two near-
est neighbours units). Thus, near φ0/2 the magnetic flux
is still a small perturbation with respect to a new real
intercell hopping Hamiltonian and the current correctly
screens the new magnetic field. From Figure 9 we see that
the maximum value of the diamagnetic current is of the
order of 1 ÷ 10 nano Ampere if t = 1 eV and the ratio
I/(φ/φ0) ≈ e|τ |/h near φ = 0.

In Figure 10 we show the trend of the ground state
energy in each k sector for the non-interacting (U = 0)
three-unit ring. In this case there is no pairing in CuO4

and indeed the ground state energy is linear in the field
at small fields (normal Zeeman effect). The lowest state is
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Fig. 10. Low energy states of the three-unit ring versus φ/φ0.
Here U = 0 and |τ | = 0.001 t. The energy is in units of t.

Fig. 11. Ground state energy E of the three-unit ring in units
of t, as a function of the concatenated magnetic flux. E is k-
independent (see text). Here U = 5 t, |τCu| = 0.1t.

k = 2 throughout. Interestingly, the three-unit ring con-
catenated with half a flux quantum would be diamagnetic,
but the absence of a second minimum shows that it would
be Larmor diamagnetism. The absence of SFQ in Fig-
ure 10 is a further evidence of the repulsion-driven pairing
mechanism discussed in Section 2.

7.2 Cu-Cu intercell hopping

We can alternatively model the three-unit ring by con-
necting only the central Cu sites of the constituent CuO4

units with a hopping term τCu; in order to study the prop-
agation of a bound pair we again assume the total number
of particles 2|Λ|+ 2 = 8. The full system threaded by the
flux has a C3 ⊗ S3

4 symmetry because the O sites are not
involved in the intercell Hamiltonian. Again, we consider
the case ∆CuO4(4) < 0 and ask if now the W = 0 bound
pair can screen out the magnetic flux.

We find that τCu produces much smaller effects than τ ;
for |τCu| � |∆CuO4(4)| the energy eigenvalues are outright
φ independent to great accuracy. Therefore we considered
|τCu| = 0.1t; still the dependence of the ground state en-
ergy is weak, see Figure 11. At φ = 0, the correction [53]
due to |τCu| to ground state energy is ∼ 10−3t. Moreover,
remarkably, the system behaves as a paramagnet.

The reason of this unusual behavior is the following.
There is no flux-induced splitting of the three k levels

because the W = 0 pair is strictly localized by the lo-
cal symmetry. Indeed the S4 label of each CuO4 unit is a
good quantum number. No SFQ is observed because the
screening of the magnetic field by the bound pair is for-
bidden. The small correction to the ground state energy
comes from a second-order process. Starting e.g. with an
unperturbed state |4, 2, 2〉, in which the bound pair is lo-
calized on the first cluster, the correction involves virtual
states |3, 3, 2〉 and |3, 2, 3〉 in which a totalsymmetric par-
ticle jumps forth and back on the nearby clusters. This
process occurs with a small amplitude because of a severe
energy misfit. This is particularly clear at weak coupling,
when the lowest-energyA1 particle of the first cluster must
hop to antibonding A1 orbitals of the nearby clusters; the
amplitude of this process is further reduced by the over-
lap of these orbitals with the localized Cu one. However,
such virtual processes are insensitive to the flux. Any φ de-
pendence arises from third-order corrections (order |Λ| in
general). Indeed, the A1 particle must go virtually around
the trip clockwise or anticlockwise. In the ground state,
of course, it chooses the wise in such a way to gain en-
ergy from the magnetic field. This is why a paramagnetic
dependence on the flux is seen in Figure 11 and the correc-
tion goes like −φ2 at small φ. This is interesting because
it shows how the local symmetry can hinder the tunnel-
ing of bound pairs carrying conserved quantum numbers;
SFQ is not a necessary consequence of superconductivity
if the pairs are not totalsymmetric.

8 Conclusions

We propose a Hubbard model with on-site repulsion de-
fined on a graph Λ with 5-site C4v-symmetric clusters as
nodes in order to study the response of the system to
a threading magnetic flux. For ring-shaped systems and
weak O-O links we find a half-integer AB effect which
is unambiguously interpreted as SFQ. The key ingredi-
ent is the W = 0 pair which is a two-body singlet eigen-
state of HCuO4 without double occupation and is formed
by mixing degenerate one-body states. In the interacting
problem the W = 0 pair becomes a bound pair when
four particles lie in the CuO4 cluster. The pairing mech-
anism is due to an effective attractive interaction medi-
ated by repeated electron-hole exchanges with the Fermi
sea. Thus, SFQ may be found in purely repulsive 1d Hub-
bard models if the nodes are represented by a non-trivial
basis. Focusing on the low-energy sector, we find a sim-
plified description of the model in terms of an effective
hard-core boson Hamiltonian that can be solved exactly
for ring-shaped systems and arbitrary filling. Further, we
show that the boson Hamiltonian is equivalent to the well-
known [42] Heisenberg-Ising spin chain with an antiferro-
magnetic anisotropy parameter η = −1.

The analytic results are well confirmed by the numer-
ical findings for the two- and three-unit ring (14,400 and
1,863,225 configurations). To this end, we have recently in-
troduced a new exact-diagonalization technique. By dis-
entangling spin-up and spin-down we reduce the size of
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the matrices that must be handled considerably; for spin-
unpolarized systems the matrix dimension is the square
root of the overall size of the Hilbert space. The method al-
lows large further reductions by exploiting the symmetry;
this can be done in several ways. One can first diagonalize
Dirac’s characters and then apply the spin-disentangled
technique with a smaller function space; alternatively, one
can set up the spin-disentangled technique by a variational
approach, a projection operator (Hn) or Lanczos method,
starting with a trial state belonging to a well defined
symmetry.

We have computed the ground state energy and the
induced supercurrent as a function of the trapped flux in
the case of weak O-O links. We have also studied the ef-
fect of direct intercell Cu-Cu links; in this case, bound
pair propagation is hindered by symmetry, because each
unit must keep its own S4 irrep. Hence, the unusual sit-
uation arises when the threading flux is not screened by
the superconducting pairs and a paramagnetic response
prevails.
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